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Abstract

Concurrent constraint programming [Sar89 ,SR90] is a sim-

ple and powerful model of concurrent computation based on

the notions of store-as-constraint and process as information

transducer. The store-as-valuation conception of von Neu-

mann computing is replaced by the notion that the store is

a constraint (a finite representation of a possibly infinite set

of valuations) which provides partial information about the

possible values that variables can take. Instead of “reading”

and “writing” the values of variables, processes may now

ask (check if a constraint is entailed by the store) and tell

(augment the store with a new constraint). This is a very

general paradigm which subsumes (among others) nonde-

terminate data-flow and the (concurrent) (constraint) logic

programming languages.

This paper develops the basic ideas involved in giving a

coherent semantic account of these languages. Our first con-

tribution is to give a simple and general formulation of the

notion that a constraint system is a system of partial infor-

mation (a la the information systems of Scott). Parameter

passing and hiding is handled by borrowing ideas from the

cylindric algebras of Henkin, Monk and Tarski to introduce

diagonal elements and “cylindrification” operations (which

mimic the projection of information induced by existential

quantifiers).

The se;ond contribution is to introduce the notion of

determinate concurrent constraint programming languages.

The combinators treated are ask, tell, parallel composition,

hiding and recursion. We present a simple model for this

language based on the specification-oriented methodology

of [OH86]. The crucial insight is to focus on observing the

resting points of a process—those stores in which the pro-

cess quiesces without producing more information. It turns

out that for the determinate language, the set of resting

points of a process completely characterizes its behavior on

all inputs, since each process can be identified with a closure

operator over the underlying constraint system. Very nat-

ural definitions of parallel composition, communication and

hiding are given. For example, the parallel composition of

two agents can be characterized by just the intersection of

the sets of constraints associated with them. We also give a

complete axiomatization of equality in this model, present
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a simple operational semantics (which dispenses with the

explicit notions of renaming that plague logic programming

semantics), and show that the model is fully abstract with

respect to this semantics.

The third contribution of this paper is to extend these

modelling ideas to the nondeterminate language (that is,

the language including bounded, dependent choice). In this

context it is no longer sufficient to record only the set of

resting points of a process—we must also record the path

taken by the process (that is, the sequence of ask/tell inter-

actions wit h the environment) to reach each resting point.

Because of the nature of constraint-based communication,

it turns out to be very convenient to model such paths as

certain kinds of closure operators, namely, bounded trace

operators. We extend the operational semantics to the non-

determinate case and show that the operational semantics is

fully consistent with the model, in that two programs denote

the same object in the model iff there is no context which

distinguishes them operationally.

This is the first simple model for the cc languages (and

ipso facto, concurrent logic programming languages) which

handles recursion, is compositional with respect to all the

combinators in the language, can be used for proving liveness

properties of programs, and is fully abstract with respect to

the obvious notion of observation.

1 Introduction

The aim of our enterprise is simple—to develop the semantic

foundations of a new paradigm for concurrent computing

[Sar89,SR90].

The basic paradigm. The crucial concept underlying this

paradigm is to replace the notion of store-as-valuation be-

hind imperative programming languages with the uotion of

store-as-constraint. By a constraint we mean a (possibly in-

finite) subset of the space of all possible valuations in the

variables of interest. For the store to be a constraint rather

than a valuation means that at any stage of the computation

one may have only partial information about the possible

values that the variables can take. We take as fundamental

the possibility that the state of the computation may only

be able to provide partial information about the variables of

interest.

This paradigm shift renders the usual notions of of (im-
perative\ ‘Lwrite>> and “read” incoherent. For example, there. ,
may be no single, finitely-describable value left to return as

the result of a “read” operation on a variable. Similarly,
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an assign operation is only capable of prescribing a fully

formed, concrete value for a variable and the new value may

have nothing to do with the previous value. This runs into

difficulties with the notion that the store specifies some con-

straints that must always be obeyed by the given variables.

Instead, [Sar89] proposes the replacement of read with

the notion of ask and write with the notion of tell. An ask

operation takes a constraint (say, c) and uses it to probe

the structure of the store. It succeeds if the store con-

t ains enouzh information to entail c. Tell takes a constraint

and conjoins it to the constraints already in place in the

store. That is, the set of valuations describing the resultant

store is the intersection of the set of valuations describing

the original store and those describing the additional con-

straint. Thus, as computation progresses, more and more

information is accumulated in the store—a basic ste~ does.
not change the value of a variable but rules out certain values

that were possible before; the store is monotonically refined.

The idea of monotonic update is centraJ to the theo-

retical treatment of I-structures in Id Nouveau [JPP89]. I-

structures were introduced in order to have some of the ben-

efits of in-place update without introducing the problems of

interference. It is interesting that the concurrent constraint

paradigm can be seen as arising as a purification of logic pro-

gramming [Sar89], an enhancement to functional program-

ming and as a generalization of imperative programming.

From the viewpoint of dataflow programming, the concur-

rent constraint paradigm is aJso a generalization in that the

flow of information between two processes is bidirectional.

It might relate to the goal of a more symmetrical theory of

computation advocated by Girard [Gir87)Gir89].

Central to our notion of constraint system isa theory of

Dartial information and entailment between Dartial informa-
“.
tlon. Such a theory exists in the form of Scott’s treatment

of information systems [SC082]. In our case it is natural

to imagine two concurrent processes imposing inconsistent

constraints on the store. Thus, we need to represent the

possibility y of inconsistent information.

The app~oach of this paper makes the possibilities for

concurrency quite apparent. Instead of a single agent inter-

acting with the store via ask and tell operations, any num-

ber of agents can simultaneously interact with the store in

such a fashion. Synchronization is achieved via a blocking

ask—an agent blocks if the store is not strong enough to

entail the constraint it wishes to check; it remains blocked

until such time as (if ever) some other concurrently execut-

ing agents add enough information to the store for it to be

strong enough to entail the query. Note, in particular, that

even though the paradigm is based on the notion of a shared

store, ideas such as “read/write locks” do not have to be in-

troduced for synchronization. The basic reason is that only

a benign form of “change’’- accumulation of information—

is allowed in the system.1 If desired, indeterminacy can

be introduced by allowing an agent to block on multiple dis-

tinct constraints simultaneously, and specify distinct actions

which must be invoked if the corresponding ask condition is

] Which of course, is not to say that systems with changable state

are not describable in the cc paradigm State change can be repre.

sented without compromising the basic paradigm by adapting stan.

dard techniques from logic and functional programming, Namely,

“assignable variables>> are embedded in the local state of a recursive

a.gent=the agent “changes” the value of the variable by merely recur-
ring with a new value for one of its arguments. In some languages in

the cc framework (e.g., Janus[SKL90]) there is considerable hope that

such mechanisms for representing state change can be competitive in

performance with traditional assignment-based techniques.

satisfied by the store.

Thus. in this view, an agent ( “computing station”) is

thought of as an information transducer. An agent can ei-

ther add a constraint to the store (tell), suspend until there

is enough information in the store to entail a given con-

straint, or decompose into a number of other agents run-

ning in parallel, possibly with hidden interconnections, and

communicating and synchronizing via the store. Of course,

as is standard, computations of unbounded length can be

achieved by using recursion.

Computational significance of the paradigm. While these

ideas are extremely simple, they conceal a powerful pro-

gramming paradigm which derives its strength from the ver-

satility of its communication mechanism. It is not possible

in a short introduction to describe the many interesting com-
munication schemes possible here. We shall just attempt to

indicate the basic ideas and refer the reader to more detailed

treatments such as [Sar89].

The essentiaJ idea is that variables serve as communica-

tion channels bet ween multiple concurrently executing agents.

The computational framework does not insist that there be

an a priori partitioning of the agents into ‘<producers” and

“consumers” of information on the variables (as happens, for

example, in function application, where information flows

from an argument to the function body, or in CSP/CCS-

style or actor-style languages). In fact, the same agent may

simultaneously add or check constraints on the same vari-

ables.

Also, the computational framework allows for the under-

lying “network transport protocol” to perform (potentially

arbitrarily sophisticated ) inferences on the “messages” en-

trusted to them—these, of course, are the deductions sanc-

tioned by the entailment relation of the constraint system.

This aJlows each agent to state the constraints as it sees

them and frees up the programmer from having to put in

agents for explicitly collecting these messages and drawing

the appropriate inferences (“reformatting the data” ). This

allows for very “high-level” languages in which a lot of com-

putation can be expressed merely by posting constraints.

Even in a constraint system (Herbrand) over a domain

as mundane as that of finite trees, such a communication

scheme leads to many interesting idioms such as incomplete

messages, short-circuits, difference-lists, “messages to the

future” etc. [Sar89]—the techniques that have colloquially

been referred to as stemming from “the power of the logical

variable”.2 For instance, it is possible to embed a commu-

nication channel (variable) in a message as a ‘[first-class”

object, in exactly the same way as data. This makes for an

elegant form of dynamic reconfigurability, of a kind which is

difficult to achieve in a simple way within frameworks such

as those of CCS and CSP. The practicality of this framework

is attested to by the fact that several implemented cc lan-

guages are now available, including at least one commercial

implementation [FT89].
This paper focusses on the use of constraints for commu-

nication and control in concurrent constraint programming

languages. It is worth pointing out that the concurrent con-

straint programming framework is, however, concerned with

z~he ~]nd of con~traint.baaed communication schemes we are de-

scribing here are the essence of computation in the logic programming

style. Indeed, the origins of the cc framework are in concurrent logic

programming and in the notion of constraint logic programing intro.

duced by [JL87,Mah8~. See [Sar89] for further details.
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much more than just concurrency—it takes the first step to-

wards a general architecture for computing with constraints

that is dependent only on the form of constraint systems,

not on their particular details (following [J L87]). As such,

it provides one coherent attempt to articulate the vision

of constraint programming manifest in the work of Suther-

land, Sussman, Steele, Borning and others. In particular,

the cc framework is also concerned with many other com-

binators for introducing and controlling logic-programming

style “search non determinism”. 3

One of the goals of our research is defining a general class

of constraint systems to which the concurrent constraint

paradigm applies. A beginning has been made in the present

paper. The presence of constraint systems in computational

and engineering problems is very widespread. For example,

several applications to AI are usefully viewed in terms of

constraints. A general enough definition would allow one

to define constraint systems as over data types as diverse

as finite trees, streams, intervals of rational numbers, vari-

ous types of functions spaces and data types derived from

knowledge rerpesentation applications. Indeed the design of

constraint systems of use in computational systems is lim-

ited only by our imaginations. It is not difficult to consider

any data-structure of interest in computer science — enu-

merate types, records, bags, arrays, hash-tables, graphs, bi-

nary search trees — and devise constraint systems of interest

over them which can usefully and interestingly be embedded

within a cc language.

Generality. The cc framework is parametrized by an arbi-

trary constraint system. This schematic treatment brings

with it all the usual advantages: results need to be proven

only once and are immediately applicable to all members of

the class. In particular the models we develop in this paper

are in fact a class of models, for a large class of programming

languages.

We place very few restrictions on the nature of a con-

straint svstem: we demand onlv that there be some svstem

of partial information, some notion of what it means for

various pieces of partial information to be true about the

same objects (the notion of co rw%tency), and what it means

for certain Dieces of information to alwavs hold. given that
.“

some other ‘pieces of information must also hold (the notion

of entailment).

Relationship to other theories of concurrence. Recentlv. .
there have been radical new ideas about concurrency. Two

of particular note are the so called Chemical Abstract Ma-

chine [B B90], due to Boudol and Berry, and mobile pro-

cesses, due to Milner and his co-workers [MP W89]. In both

of these approaches the key new ingredient is that processes

can alter their interactions and are, in efffect, mobile. In our

approach the interactions between processes is dynamic too
in the sense that there is no predetermined set of agents that
a given agent is limited to interact with. The relationships

need, however, to be understood carefully. It would be par-

ticularly interesting to understand how a lambda abstrac-

tion mechanism could be incorporated into the concurrent

constraint paradigm. Understanding the relationships with

3Throughout this paper when we taIk of the “cc languages” we

shall mean the cc languages with Ask and Tell as the only primitive

con~traint.relatad apepations Other cc.herent ~md very useful @rni-

tives can be (and have been, in [Saz-89]) defined, but they are outside

the scope of this paper.

the work on mobile processes or Boudol’s gamma calculus
would be very helpful, as it is known that the latter can

encode the lazy lambda calculus [Mi190 ,JP90].

1.1 Contributions of this paper

The central task of this paper is to develop the semantic

foundations of the programming paradigm discussed above.

Towards this end, we formalize the basic notion of a con-

st raint system, and present operational and denot ational

semantics for the determinate and nondeterminate cc lan-

guages. The next several paragraphs discuss each of these

contributions in detail.

Constraint systems. We formalize the notion of constraint

system, generalizing and simplifying previous treatments in

[Sar89,JL87,SR90]. The basic insight is to treat constraint

systems as systems of partial information, in the style of

Dana Scott’s development of information systems, together

with operators to express hiding of information. From a

programming point of view such operations allow the in-

troduction of parameter-passing in constraint programming

languages, and the introduction of “local variables” within

procedures.

Philosophy of modeling. The models developed in this pa-

per are based on the philosophy of modeling discussed in

[OH86,Hoa90]. In the next few paragraphs we summarize

the basic ideas and ontological commitments made in this

style.

Crucial to this philosophy is the identification of the no-

tion of observation of a process. A process is then equated

with the set of observations that can be made of it. The set

of processes is identified by presenting a collection of natu-

rally motivated closure conditions on sets of observations.

It is important that the observations of a process include

all ways in which the process can “go wrong”, that is, fail to

meet obligations imposed on it by the environment. Once

a process- “goes wrong”, further detailed modeling of the

process is irrelevant, since the emphasis of this approach is

on guaranteeing that as long as the environment honors its

obligations to the process, the process cannot “go wrong”.

This ontological commitment is usually captured in the slo-

gan “divergence is catastrophic”, or, ‘{anything can happen”

once the process goes wrong.

One way in which the process can go wrong is by en-

gaging in ‘(internal chatter”, that is, in an infinite sequence

of internal actions (possibly continually producing output in

the meantime), without asking the environment for some in-

put (and thereby giving the environment the ability to con-

trol its execution by denying it that input). Within the cc

framework, another way in which a process can “go wrong”

is if it causes the shared store to become inconsistent — for

in such a state the process is again completely uncontrol-

lable from the environment. No action that the environ-

ment can take can then influence the course of execution

of the process, since the inconsistent store can answer a ng

ask request. Hence the process is free to follow any branch

that it could potentially follow, without more input from the

environment. In particular, if the process recursively calls

another process, then it can engage in an infinite execution

sequence because every ask operation guarding a recursive
procedure call will be answered successfully.
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This suggests that in the semantic model the process that

can produce false should not be distinguished form the pro-

cess that can engage in an infinite execution sequence; both

such processes should be treated as “catastrophic”. This is

indeed the approach followed in the main body of the paper.

However, other alternative treatments of failure and diver-

gence are possible, and in Section 3 we shall indicate some

of the possibilities and how they can be treated.

Determinate constraint programming. Sixteen years ago,

Kahn gave a theory of determinate data-flow [Kah74]. To-

day this theory (with some extensions, e.g. to concrete

data structures) remains the dominant theory of determi-

nate concurrent computation. While simple, elegant and

widely applicable, the theory’s emphasis on computing with

directional point-to-point communication channels imposes

some expressibility restrictions: channels carry only fully

formed values from the underlying data domain; networks

are not dynamically reconfigurable in that connections can-

not themselves be passed as data on communication chan-

nels; and each channel has only one reader and one writer.

Because of these restrictions, Kahn’s theory cannot model

such useful programming idioms as incomplete messages,

difference lists, recursive doubling, multiple readers/writers

of a communication channel, dynamic reconfiguration, etc.

Although these techniques were originally developed in the

context of nondeterminate concurrent logic programming,

they are aJl both inherently determinate and usefully ex-

pressible in determinate contexts.

This paper presents a simple theory of determinate com-

putation which can model all of the above idioms and more:

our theory preserves the essential features of Kahn’s the-

ory while substantially extending its domain of applicability.

From the contraint programming point of view it is useful

and interesting to focus on the determinate subset because a

mathematically much simpler treatment can be given, with-

out sacrificing any essential novelty—the major semantic

and computational ideas underlying the cc paradigm can

already be illustrated in the determinate case.

We present a simple algebraic syntax for determinate

concurrent constraint programs. We also present an op-

erational semantics based on a labelled transition system

in which a configuration is just an agent and a label is a

pair of constraints (the store in which the transition is ini-

tiated and the store in which it terminates). The transition

system is able to completely avoid using substitutions and

“variable-renamings”, thereby considerably simplifying the

treatment. Past theoretical treatments of (constraint) logic

programming have had to use various ad hoc techniques for

dealhw with this rn-oblem.

Th~ denotatio~ of a process is taken to be a set of con-

straints (the “resting points” of the process) satisfying cer-

tain properties. Various combinators are defined on such

processes, corresponding to ask and tell operations, to run-

ning two agents in parallel, and to creating a new ~loca.1~>

communication channel. We show that the denotational se-

mantics is fully abstract with respect to he operational se-

mantics, We also give a sound and complete axiomatization

of equality for finite programs, so that finite program equiv.

alence can be established purely by equational reasoning.

We also develop a slightly different model in which limits of

(fair) infinite execution sequences are observed.

Models for nondeterminate cc languages. The denotation

of a nondetermin ate Drocess is somewhat more comdex than.
in the determinate case: rather than storing just the resting

points of a process, we must also associate with each resting

point the “path” followed by the process in reaching that

point. Such a path is also called a failure. The denotation

of a rxocess is the set of all its failures. The set of all rxo-

cesse~ is identified by presenting some naturally motiv~ted

closure conditions on sets of failures, following [Jos90], (For

example, one of the major conditions ensures that processes

are finitely nondetermin ate. ) The resulting notion of a pro-

cess is intuitive and easy to understand. Combinators cor-

responding to ask, tell, nondeterminate (dependent) choice,

parallel composition and hiding are defined. A simple op-

erational semantics is given, and a full correspondence with

the denot ational semantics is established. In particular, we

believe that this treatment gives a completely satisfactory

account of the semantics of concurrent logic programming

languages.

A central issue in our semantic treatment is the repre-

sentation of a failure. A failure could be represented as a

sequence of ask/tell annotated constraints. Such a strategy

is followed in earlier work on related languages, for example

in [Sar85, Lev88, GL90], [GCLS88], [GMS89] etc. However,

ask-tell seouences are far too concrete in this settirw. Thev.
store too much information which must then be abstracted

from (usually via complex closure conditions) since they en-

code the precise path followed by a process to arrive at a

resting point. Furthermore, the definition of various combi-

nators becomes rather cumbersome because of the need to

“propagate” information down the trace. Instead, we chose

to remesent observations via various kinds of closure oDera-.
tors. To capture various operational notions of interest, we

introduce the concept of trace operators, and bounded clo-

sure operators, and present some portions of their theory

relevant to this paper.

We SJSO establish a very simple relationship between the

nondeterminate and determinate semantics, showing that

the two semantics are essentially identical for determinate

programs over finit ary constraint systems.

In summary, we present a simple model for the cc lan-

guages that is fully able to account for nondeterminism and

divergence, thus permitting the use of this model in reason-

ing about liveness properties of programs. The model is also

shown to be fully consistent with the intuitive operational

semantics of cc programs.

1.2 Related work

The basic concepts of concurrent constraint programming

were introduced in [Sar88, Sar89]. Subsequently, we developed

an operational semantics and a bisimulation semantics in

[SR90]. This line of research extends and subsumes (for

all intents and purposes) earlier work on the semantics of

concurrent logic programming languages, 4

The power of the “logical variable” has been amply rec-

ognized in recent years, and numerous authors—too numer-

ous for us to survey their work in this extended abstract—

have investigated the combination of functional and logic

4The semantics presented in this paper does not account for the

language Concurrent Prolog studied in [G CLS88]; we do not, however,

view this as a defect in our approach/ Indeed, researchers working

with Concurrent Prolog have moved to the Ask-and-Tell cc framework

[KYSK88,GMS89].
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programming languages [Lin85,DL86,ANP89, JPP89]. How-
ever, no account of the- basic paradigm comparable with

Kahn’s original account in simplicity and generality has been
forthcoming.

Perhaps the most noteworthy in this context is the work
of [J PP89], which discusses a subset of the functional pro-

gramming language Id Noveau with “logical” arrays [ANP89].

Their semantic treatment also identifies a program as a clo-

sure operator. However, their treatment is specirdized to

the particular kinds of arrays they were dealing with; our

work is parametrized by a very general notion of constraint

system. Further, they do not explicitly discuss the hiding

and the Ask operations; though their “Tell” operation does

implicit asks. We also present an axiornatization for the

model. Their operational model includes an explicit discus-

sion of how the constraints are resolved and remesented..
we achieve considerable simplicity by abstracting away the

details of the constraint resolution process.

The characterization of concurrency via intersection of

sets of fixed points has also been elaborated by Hoare in a

recent paper [Hoa89], in a setting related to Unity [CM88].

Our paper develops that viewpoint, and presents a char-

acterization of other combinators as well, in the same style.

We believe that the concurrent constraint programming lan-

guages are the natural setting for the development of a the-

ory of computing with closure operators.

The semantics of nondeterminate concurrent constraint

programming languages is becoming an active area [SR90,

GMS89,GL90,dBP90 a]. However none of this work explores

the very simple characterizations possible for the determi-

nant e languages, deahng instead with the representation of

mocesses as various sorts of trees or sets of i/o annotated

sequences of constraints. The notion of det&minacy was
studied in the set-up of logic programming languages in

[Mah87], but no characterizations of the kind we provide
here were given.

[GMS89] does not consider most of the combinators we

treat here, besides having a complicated treatment of ask/tell
sequences. Neither does it treat recursion.

In work to appear, deBoer and Palamidessi [dBP90a,

dBP90b] propose a model which is similar to ours in many

respects. In particular, they have also recognized that it is

sufficient to take seauences of ask/tell actions in order to

get a model for the ~c languages. However, their treatment

ignores recursion. Much of the sophistication of the present

model lies in the way finite nondeterminate axioms need to

be introduced in order to correctly model divergence. Their

model in [d BP90b] is not compositional with respect to the

choice operator.

Our development follows closely Mark Josephs’ treat-

ment of receptive processes in [Jos90]. A receptive process

can always accept any input from the environment, but may

produce different (or no) output depending on the input.

Josephs gives a set of axioms for reactive processes that turn

out to be more or less what is needed in order to develop a

model for the cc languages as well. The primary differences

lie in the nature of communication, and in the combina-

tors treated. Josephs’ theory treats communication in the

usual CCS/CSP style as the exchange of uninterpreted to-

kens with the environment. The constraint-based nature of

the cc languages imposes additional structure which must be

considered. However, as this paper demonstrates, it is pos-
sible to adapt his basic model to the cc setup without major

reworking, which should confirm the .tssential robustness of

his conceptualization of asynchronous systems.

2 Constraint Systems

Our presentation here is simplified and generalized from

the present ation in [SR90]. More details may be found in

[SPRng].
What do we have when we have a constraint system?

First, of course, there must be a uocabuhary of assertions

that can be made about how things can be — each assertion

will be a syntactically denotable object in the programming

language. Postulate then a set D of tokens, each giving us

partial information about certain states of affairs. At any

finite state of the computation, the program will have de-

posited some finite set u of such tokens with the embedded

constraint-solver and may demand to know whether some

other token is entailed by u. Postulate then a compact en-

tailment relation l-~ pD x D (pD is the set of finite subsets

of D), which records the inter-dependencies between t okens.

The intention is to have a set of tokens v entail a token P
just in case for every state of affairs for which we can assert

every token in v, we can also assert P. This leads us to:5

Definition 2.1 A simple constraint system is a structure
(D, }), where D is a non-empty (countable) set of tokens

or (primitive) constraints and l-~ pD x D is an entaihnent

relation satisfying (where pD is the set of finite subsets of

D:

Cl u E P whenever P ~ u, and,

C2ul-Qwhenever ul-Pforall PC v,andv+Q.

Extend 1- to be a relation on pD x pD by: u E v iff u + P

forevery PEv. Define u%vifu E vand vi-u. ❑

Of course, in any implementable language, F must be

decidable—and as efficient as the intended class of users

of the language demand. Compactness of the entailment

relation ensures that one has a semi-decidable entailment

relation. If a token is entailed, it is entailed by a finite set

and hence if entailment holds it can be checked in finite

time. If the store does not entail the constraint it may not

be possible for the constraint solver to say this at any finite

stage of the computation.
Such a treatment of systems of partial information is,

of course, well-known, and underlies Dana Scot t‘s informa-

tion systems approach to domain theory [SC082]. A simple

constraint system is just an information system with the

consistency structure removed, since it is natural in our set-

ting to conceive of the possibility that the execution of a

program can give rise to an inconsistent state of affairs.

Following standard lines, states of affairs (at least those

representable in the system) can be identified with the set

of all those tokens that hold in them.

Definition 2.2 The elements of a constraint system (D, l-)
are those subsets c of D such that P 6 c whenever u ~f c

(i.e. u is a finite subset of c) and u t- P. The set of all such

elements is denoted by ID I. For every u ~ f D define z c ID I

to betheset {Pe Dlu l-P}. II

5 In reality, the systems underlying most concrete concurrent con-
straint programming languages have slightly more structure to them,
namely they are ask-and-tell constraint systems [Sar89]. The addi-

tional structure arises because it is possible to state at the level of a

constraint system that the imposition of certain constraints can be de-
layed until such time as some associated constraint is entailed by the

store ( “implicit Ask-restriction” ). However, this additional structure

is not crucial, and can be easily handled by extending the techniques

presented in this paper.
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As is well known, (ID], Q) is a complete algebraic lattice,

the compactness of 1- gives us algebraicit y of ID], with least

element true = {P I 0 1- P}, greatest element D (which we

will mnemonically denote false), glbs (denoted by n) given

by intersection and lubs (denoted by U) given by the closure

of the union. The lub of chains is, however, just the union

of the members in the chain. The finite elements of ID I are

just the elements generated by finite subsets of D; the set of

such elements will be denoted ID 10. We use a, b,c, d and e to

stand for elements of ID I; c z d means c 1- d. Two common

notations that we use when referring to the elements of ID I
are Tc= {dlc< d} and J c= {did < c},

The alert reader will have noticed that the constraint

system need not generate a jinitcarye algebraic lattice since,

in general, Scott information systems do not generate fini-

tary domains. Indeed many common constraint systems are

not finitary even when the data type that they are defined

over is finitary. For the interpretation of determinate con-

current constraint programs we do not need the constraint

system to be finitary but we do for the nondeterminate case.

If we drop the requirement that the entailment relation is

compact we will generate, in general, lattices that are not

algebraic. We always need the entailment relation to be

compact since we do not know, as yet, whether these ideas

can be extended to nonalgebraic constraint systems.

In what follows, by a finite constraint we shall mean a

finite set of tokens. We also take the liberty of confusing a

finite constraint u with z ~ I.DIo.

Example 2.1 Generating constraint systems.

For any first-order vocabulary L, and countably infinite set

of variables var, take D to be an arbitrary subset of open

(L, var)-formulas, and t- to be the entailment relation with

respect to some class A of L-structures. That is, {PI, . . . .

P.} > Q iff for every structure M ~ A, an M-valuation

realizes Q whenever it realizes each of PI, . . . . P~. Such a

(D, t-) is a simple constraint system. II

Example 2.2 The Kahn constraint system.

More concretely, let us define the Kahn constraint system

D(B) = (D, }n) underlying data-flow languages [Kah74],

for B = (1?, I-B) so some underlying constraint system on

a domain of data elements, E. Let L be the vocabulary

consisting of the predicate symbols = /2, c/1 and the func-

tion symbols f/1, r/1, a/2, A/O. Postulate an infinite set

(X, Y C)Var of variables. Let the set of tokens D consist of

atomic (Z, Var) formulas. Let A consist of the single struc-

ture with domain of interepretation BW the set of (possibly

infinite) sequences over l?, (including the empty sequence

A) and interpretations for the symbols in .C given by:

●

e

b

*

= is the equality predicate,

c is the predicate that is true of all sequences except

A.

f is the function which maps A to A, and every other

sequence s to the unit length sequence whose first el-

ement is the first element of s,

r is the function which maps A to A, and every other

sequence s to the sequence obtained from s by drop-

ping its first element,

‘This means that a finite element dominates only finitely many

elements.

t a is the function which returns its second argument

if its first argument is A; otherwise it returns the se-

quence consisting of the first element of its first argu-

ment followed by the elements of the second argument.

Now, we can define b_V by:

{C1,..., Cn}EDC* AED(CICn+C)n+C)

thus completing the definition of the constraint system D =

(D, I-~).
Note that in this constraint system the set of elements

are not finitary. The constraint X = Y, which is finite,

entails infinitely many constraints of the form f(r”(X)) =

~(r”(Y)). Since the constraint system has a compact en-

tailment relation we will have algebraicity. In the lattice

generated by the entailment closed sets of tokens the set

consisting of the entailment closure of {X = Y} will con-

tain all the tokens of the form f (T*(X)) = f (r-n(Y)); the set

consisting of all the latter, however, will not contain X = Y.

It is possible to define a variant system that is finitary. The

data type of streams is, of course, finitary.

D

Example 2.3 The Herbrand constraint system.
We describe this example quickly. There is an ordinary first-

order language L with equality. The tokens of the constraint
system are the atomic propositions. Entailment can vary de-

pending on the intended use of the predicate symbols but it

must include the usual entailment relations that one expects

from equality. Thus, for example, f(x, Y) = f(A, g(~, C))

must entail X = A and Y = g(13, C). If equality is the

only predicate symbol then the constraint system is finitary.

With other predicates present the finitariness of the lattice

will depend on the entailment relation. ❑

Example 2.4 [Rational intervals.

The underlying tokens are of the form X c [z, y] where z

and y are rational numbers and the notation [z, y] means

the closed interval between z and y. We assume that every

such membership assertion is a primitive token.

The entailment relation is the one derived from the ob-

vious interpretation of the tokens. Thus, X c [xl, g]] R

X c [ZZ, Y2] if and only if [xl, VI] ~ [ZZ, yz]. Whether

this yields a compact entailment relation is a slightly del-

icate issue. If we assume the usual definition of intersec-

tion and unions of infinite families of intervals, we will def-

initely not have a compact entailment relation. For exam-

ple, since fim>O [0,1 + I/n] = [0, 1], we would have {X E

[0, 1 + I/n]ln > O} E (X c [0, I]) but no finite subset of

{X 6 [0,1 + l/n]ln > O} would entail X 6 [0, I]. We may

take the definition u t- X E [o, y] to mean that u must be

a finite collection of intervals. In this case the entailment

relation is, by definition, compact and the lattice generated

is algebraic. It will, however, appear slightly peculiar with
respect to one’s normal expectations about intervals. The

join of a family of assertions involving membership of X in

a nested family of intervals will not yield an assertion about

membership in the intersection of the family. Instead there

will be a new element of ]Dl that sits below the intersec-
tion. Thus, for example, the join Un>o X C [0,1 + I/n]

will not be X E [0, 1] but rather a new element that sits

below X c [0, 1]. Clearly the lattice is not fiuitary but the

entailment relation is compact and the lattice is indeed al-

gebraic. It is worth noting that this example shows that we
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can model determinate computations over domains that are
not incretnenta17. In fact we have an order-dense subse~ We

can work with such a lattice when we model the determinate
language but, as yet, we cannot model the nondeterminate

languages over such constraint systems. It is known that the
closure operators over a lattice with an order-dense subset

cannot form an algebraic complete partial orderg. Thus, the
extension of these ideas to higher-order programming wilf be
challenging. ❑

Hiding in constraint systems. Any reasonable program-

ming language supports modularity by providing a notion

of hiding the internal structure of an agent from its cent ext.

We support this hiding with a family of hiding operators on

the underlying constraint system; these operators capture

the notion of projecting away information. In this we use

the axiom atization of cylindric algebra[HMT71]. In future

research we plan to give a more principled account of hiding

and of the choice of axioms using notions from categorical

logic.

Definition 2.3 A cylincbic constraint system is a structure

(D, l-, Var, {=x ] X c Var}) such that:

● (D, t-) is a simple constraint system,

● Var is an infinite set of indeterminate or variables,

● For each variable X ~ Var, ax ; pD - pD is an

operation satisfying:

El ut - 3xtt

EZ u 1- v implies 3XU R 3XV

E3 ~x(UuqXV) x 3xu U3X0,

E4 3x3yu % 3y~xU

❑

For every variable X, 3X is extended to be a continuous

function from IDI 4 IDI in the obvious way:

3xc = {P I 3xu 1- P, for some u ~f c}

Example 2.5 Let the token set consist of some subclass of

(L, Var) formulas closed under existential quantification of

finite conjunctions. Each operator 3X is then interpreted

by the function which maps each finite set {PI, . . . . P*} of

tokens to the set of tokens {3X. P1 A A Pn}. It is eaay to

see that the four conditions above will be satisfied. •1

Diagonal elements. For all useful programming languages

in this framework, it is necessary to consider procedures with

parameter passing. In usual logic programming languages,

parameter passing is supported by using substitutions. We

use a trick due to Tarski and his colleagues. For the class

of constraint systems discussed above, this trick can be il-

lustrated by providing, as tokens, the “diagonal” formulas

X = Y, for X, Y c Var. Now, the formula #[Y/X] is nothing

else but the formula 3X.(X = Y) A ~. More generally, for an

7A prime interval is ~ pair of finite elements such that there is no

finite element properly bet ween them, An incremental domain is one

in which between every two related finite elements there is a finite
sequence of prime intervals that interpolates between them,

aThis means that between any two elements there is ~ another

distinct element.

‘We are indebted to Michael Huth for pointing this out.

arbitrary constraint system, we can axiomatize the required

properties oft he diagonal elements, following [H MT71]. We

demand that the token set D cent ain, for every pair of vari-

ables X, Y G Var, the token dx y satisfying the properties:

D1. 0 h dxx

D2. if X # Y, {dxY} % 3z{dxY, dYz}

D3. {dxy} U3X(ZLU {(ix~}) t_ u

The defect of thw axiomatization is that it “appears out

oft hln air”. In particular, categorical logic, as expounded by

Lambek and Scott [LS86] haa a thorough analysis of vari-

ables and also of variable-free calculi and the relationship

between them. If we cast the notion of constraint system in

categorical terms, we would be able to use the vast body of

results about categorical logic [LS86] in the course of our de-

velopment of the concept of constraint system. The axioms

for hiding would emerge from fundamental principles, Inves-

tigations into catgoricaf logic suggest that the logic implicit

in our treatment is a form of coherent logic [MR97] 10.

3 The determinate language

. . . the most important observations are those which can be

made only indirectly by a more or less eJaborat e experiment

. . . a successful choice of the right kind of indirect

observation can provide a remarkably coherent and general

explanation of a wide range of diverse phenomena.

— C.A.R. Hoare (1990)

Our basic semantic insight is that the crucial observation to

make of a process is the set of its resting points. A process

is an information processing device that interacts with its

environment via a shared constraint representing the known

common information. A resting point of a process is a con-

straint c such that if the process is initiated in c, it will

eventually halt wit bout producing any more information. l]

While the basic idea is the same, the semantics for the

nondeterminate language is significantly more complex than

the semantics for the determinate language. The reason is

simple. For the determinate language, it turns out to be
sufficient to store with a process just the set of its resting

points, as we now discuss.

To be determinate, the process must always produce the
same output constraint when given the same input con-

st raiut. We can therefore identify a process with a function:

This function maps each input c to false if the process when

initiated in c engages in an infinite execution sequence, and

to d if the process ultimately quiesces having upgraded the
store to d. 12 It turns out that there is suficied information

10we are indebted to Robert Seely and Phil ScOtt fOr this

observation.
11Strjct,y Speakjng, this js not true. In the cOlltinUOUs c105ure 0P-

erator semantics we consider later in this section, a resting point of a

process is a constraint c such that if the process were to be initiated

in c, it would not be able to ouptut any new information without

receiving some more information from the outside. The point is that

the process may engage in an infinite execution sequence in c, as long

m it produces no new information.
12 Thus we shall confuse the process that on input c produces false

and halts with the process that on input c engages in an infinite

execution sequence. Recall from the introduction that this is in tune

with the specification-oriented approach to semantics,
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in the resting points of the process to uniquely determine its

associated function. This property highlights the semantic

simplicity of the Ask-and-Tell communication and synchro-

nization mechanism.

Let f be the operator on ID 10 corresponding to a given

process. Now, the only way in which this process can affect

the store is by adding more information to it. Therefore, ~

must be extensive:

Vc.c < f(c) (1)

Second, the store is accessible to the process as well as

its environment: therefore if on input c a process produces

output d and halts, it must be the case that d is a resting

point, that is, on input d the process cannot progress further

(because if it could, then it wouldn’t have stopped in d).

That is, ~ must be idempotent:

Vc.f(f-(c)) = f(c) (2)

Finally, consider what happens to the output of such a

function when the information content of the input is in-

creased. If the invocation of the function corresponds to the

imposition of a constraint, then as information in the input

is increased, information in the output should not decrease.

Such a function is called monotone

(3)

An operator over a partial order that is extensive, idem-

potent and monotone is called a closure operator (or, more

classical, a consequence operator, [Tar56]). Closure opera-

tors are extensively studied in [GKK+ 80] and enjoy several

beautiful properties which we shall exploit in the following.

Within computer science, continuous closure operators have

been used in [SC076] to characterize data-types.

We list here some basic properties. The most fundamen-

tal property of a closure operator j over a lattice E is that

it can be represented by its range f(E) (which is the same

as its set of fixed points). ~ can be recovered from ~(E)

by mapping each input to the least element in f(E) above

it. This is easy to see: by extensiveness, ~(c) is above c; by

idempotence, ~(c) is a fixed-point, of $, and by monotonic-

ity, it is the least such fixed-point. This representation is

so convenient that in the following, we shall often confuse

a closure operator with its range, writing c c ~ to mean

~(c) = c. In fact, a subset of E is the range of a closure

operator on E iff it is closed under glbs of arbitrary subsets

(whenever such glbs exist in the lattice). Thus, the range of

every closure operator is non-empty, since it must contain

false = f10.

Partial order. For a closure operator ~ over ID 10, let df

be the divergences of ~, that is, those inputs in which the

process diverges. As discussed above, the divergences are

exactly those constraints which are mapped to false by f,

that is, j–l (false). The partial order on determinate pro-

cesses of interest to us will be based partly on the processes’
divergences. The intention is that a process f can be im-

proved to a process g if the divergences of g are contained

in those of ~ and at every point in the convergence of f, f

and g take on identical values. In terms of fixed points, this
yields:

Definition 3.1 The divergence order on closure operators

over Illlo is given by:

II

The bottom element of this partial order is {false} which

diverges everywhere. It is not hard to see that this order is

complete, with limits of chains given by unions of the set of

fixed-points.

3.1 Process Algebra

In this section we develop a simple language, the determi-

nate cc language, for expressing the behavior of concurrent

determinate constraint processes. We consider agents con-

structed from tells of finite constraints, asks of finite con-

straints, hiding operators, parallel composition and proce-

dure calls. Throughout this section we shall assume some

fixed cylindrical constraint system (with diagonal elements)

D. As usual, IDI denotes this constraint system’s set of

elements, while IDIo denotes its set of finite elements.

We also define a quartic transition relation

+~ Env x (IDIO x Ill\o) x A x A

which will be used to define the operational semantics of

the programming language. (Here Env is the set of all par-

tial functions from procedure names to (syntactic) agents. )

Rather than write (p, (c, d), A, 1?) <---+ we shall write p ~

A ‘3) B (omitting the “p H“ if it is not relevant) and take

that to mean that when initiated in store c, agent A can, in

one uninterruptible step, upgrade the store to d, and subse-

quently behave like B. In the usual SOS style, this relation

will be described by specifying a set of axioms, and tak-

ing the relation to be the smallest relation satisfying those

axioms.

The syntax and semantics of the determinate language

are given in Table 1. We discuss these semantic definitions

in this section. For purposes of exposition we assume that

procedures take exactly one variable as a parameter and that

no program calls an undefined procedure. We also system-

atically confuse the syntactic object consisting of a finite set

of tokens from D with the semantic object consisting of this

set’s closure under 1-.

Tells. The process c augments its input with the finite con-

straint c. Thus it behaves as the operator At, c U x, which

in terms of fixed points, is just:

c={dclDlold~c}

The operational behavior of c is described by the transi-

tion axiom:

~ (d~d) true
(c # true) (4)

corresponding to adding the information in c to the shared

constraint in a single step. 13

Asks. Let c be a constraint, and f a process. The process
c ~ f wtits untfi the store contains at le~t ss m~ch infor-

mation as c. It then behaves like f. Such a process can be

described by the function Az.zf z > c thenf(z) else c. In

terms of its range:

c-+f={dclDlold~c+def}

lsThroughOut the ~e~t of this paper, depending on cOntext, we shall

let c stand for either a syntactic object consisting of a finite set of

tokens, the constraint obtained by taking the closure of that set under

F, the (semantic) process that imposes that constraint on the store,

or the (syntactic) agent that imposes that constraint on the store,
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Syntax.

P::=D.A

D::=. I p(x) :: A I D.D

A::=c]c -+ AI AA A13XA [P(X)

Semantic Equations.

A(c). = {d 6 IDIo I d ~ c}

A(c+A)e ={d EIDlo\d~c+d EA(A)e}

A(A A~)e = {~ c ID]O I d G A(A)e A d c A(l?)e}

A(3XA). = {d c IDIo I 3. E A(A)e.3xd = 3XC}

A(p(X))e = %(d~~ U e(p))

‘D(c)e = e

‘D(p(X) :: A.D) = D(D)e[p w 3x(d.x U A(A)e)]

P(D.A) = A(A)( X D(D))

Above, c ranges over basic constraints, that is, Iinite sets of to-

kens. P is the syntactic class of programs, D is the syntactic

class of sequences of procedure declarations, and A is the syn-

tactic class of agents. a is some variable in the underlying con-

straint system which is not allowed to occur in user programs. (It

is used as a dummy variable during parameter passing. ) e maps

procedure names to processes, providing an environment for in-

terpreting procedure calls. We use the notation c U j to stand for

~ldcj}.

Table 1: Denotational semantics for the Ask-and-Tell De-

terminate cc languages

The ask operation is monotone and continuous in its process

argument. It satisfies the laws:

(Ll) c~d=c~(c Ad)

(.L2) c ~ true= true

(L3) c+d+A=(c IJd)+A

(L4) true+ A = A

The rule for c -+ A is:

c+ A(fl)A if ~>c
(5)

Parallel composition. Consider the parallel composition of

two processes f’ and g. Suppose on input c, f runs first,

producing ~(c). Because it is idempotent, j will be unable to

produce any further information. However, g may now run,

producing some more information, and enabling additional

information production from ~. The system will quiesce

exactly when both f and g quiesce. Therefore, the set of
fixed points of f A g is exactly the intersection of the set of
fixed points of f with the set of fixed points of g:

fAg=fng

It is straightforward to verify that this operation is well-

defined, and monotone and continuous in both its argu-

ments.

While the argument given above is quite simple and

elegant, 14 it hides issues of substantial complexity. The ba-

sic property being exploited here is the restartability of a

determinate process. Suppose an agent A is initiated in a

14And ~hou,d be con~r=ted with most definitions of concurrency

for other computational models which have to fall back on some sort

of interleaving of basic actions.

store c, and produces a constraint d before quiescing, leav-
ing a “residual agent” B to be executed. To find out its

subsequent behavior (e.g., to find out what output it would
produce on a store e ~ d), it is not necessary to maintain any

explicit represent ation of B in the denotation of A. Rather,

the effect of B on input e z d can be obtained simply by

running the original program A on e! Indeed this is the ba-

sic reason why it is possible to model a determinate process

accurately by just the set of its resting points.

As we shall see in the next section, this restartability

property is not true for nondeterminate processes. Indeed,

we cannot take the denotation of a process to be a function

(nor even a relation) from finite stores to finite stores; rather

it becomes necessary to also preserve information about the

path (that is, the sequence of ssk/tell interactions with the

environment) followed by the process in reaching a resting

point.

From this definition, several laws follow immediately.

Parallel composition is commutative, associative, and has

an identity element.

(L5) AA B= BAA
(L6) AA(BAC)=(AAB)AC

(L7) A A true= A

Telling two constraints in parallel is equivalent to telling

the conjunction. Prefixing distributes through parallel com-

position.

(L8) cAd=(c Ud)

(L9) c+(AAB) =(c+A)A(c+B)

(L1O) (a-+ b) A(c+d)=(a-+b)

ifc>a, b~d

(~11) (a+ b) A(c+d)= (a+ b) A(c Ub+d)
ifc>a

(L12) (a~b)A(c ~d)=(a~b)A(c-+d Ub)

ifd>a

The transition rule for A A B reflects the fact that A and

B never communicate synchronously in A A B. Instead, all

communication takes place asynchronously with information

added by one agent stored in the shared constraint for the

other agent to use.

A (~ A,

(6)
AA B(Q) A,AB

BAA(~) BAA,

Projection. Suppose given a process f. We wish to define

the behavior of 3X f, which, intuitively, must hide all inter-
actions on X from its environment. Consider the behavior

of 3Xf on input c. c may constrain X; however this X is
the “external” X which the process f must not see. Hence,
to obtain the behavior of 3Xf on c, we should observe the
behavior of f on 3X c. However, f (= Xc) may constrain X,

and this X is the “internal” X. Therefore, the result seen
by the environment must be c u 3X f (3Xc). This leads us to

define:

3Xf = {C G 1~10 I ~d e f.&C = 3Xd}

These hiding operators enjoy several interesting proper-

ties. For example, we can show that they are “dual” closure

operators (i.e., kernel operators), and also cylindrification
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operators on the class of denotations of determinate pro-

grams.

In order to define the transition relation for 3XA, we ex-

tend the transition relation to agents of the form 3X(d, A),

where d is an internal store holding information about X

which is hidden outside 3X(d, A). The transition axiom for

31XA yields an agent with an internal store:

A ( ~gd) ~

~xA (c,c~xd)
(7)

~x(d, 1?)

This axiom reflects the fact that all information about

X in c is hidden from 3XA, and ail information about X

that A produces is hidden from the environment. Note that

B may need the produced information about X to progress;

this information is stored with B in the constraint d.

The axiom for agents with an internal store is straightfor-

ward. The information from the external store is combined

with information in the internal store, and any new con-

straint generated in the transition is retained in the internal

store:

A (du~,d’) ~

(8)

3X(d, A) “’c~xd’) 3X(d’, 1?)

In order to canonicalize agents with this operator, we

need the following law:

(Ezl) 3XC = 3XC

In order to get a complete equational axiomatization for

finite agents containing subagents of the form 3XB, we need

the constraint system to be expressive enough. Specifically,

we require:

(Cl) For all c 6 IDIo and X ~ Var, there exists d E \D\O

(written Vxc) such that for all d’ ~ IDIo, d’ z d iff

IXd’ ~ C.

(C2) For all c, c’ E \.D]O and X c Var, there exists a d c

IDI. (written +x (c)c’)) such that for all d’ c [Dl,

cU3Xd’~c’ iff3Xc U3Xd’~d.

Now we can state the remaining laws needed to obtain a

complete axiom atization.

(Ez2)

(Ez3)

(Ez4)

3XC A 3XA:eI +x (c, ci) + di

Recursion. Recursion is handled in the usual way, by tak.

ing limits of the denotations of all syntactic approximants,

since the underlying domain is a cpo and all the combinators

are continuous in their process arguments.

Operationally, procedure calls are handled by looklng up

the procedure in the environment p. The co~responding ax.

iom is:

p k P(X) ‘*) 3cr(dax, ~(p)) (9)

Example 3.1 (Append) To illustrate these combinators,

consider the append procedure in the determinate cc lan-

guage, using the Kahn constraint system:

append(Inl, In2, Out) ::

Inl = h + Out = In2

A c(Inl) + 3X (Out = a(f (Ini), X) A -append(r(InI), In2, X)).

Thk procedure waits until the environment either equates

X to A or puts at least one data item onto the communica-

tion channel X. It then executes the appropriate branch of

the body. Note that because the ask conditions in the two

branches are mutually exclusive, no call will ever execute the

entire body of the procedure. This procedure therefore uses

the A operator (which ostensibly represents parallel execu-

tion) as a determinate choice operator. This is a common

idiom in determinate concurrent constraint programs. ❑

Completeness of axiomatization. Completeness of axiom-
atization is proven via the following “normal form”.

Definition 3.2 An agent A is in normal form iff A = true

or A = A,cJc~ -+ d; and A satkfies the following properties:

(Pi) c: < d:

(P2) i # j implies Ci # Cj

(P3) c;<., implies di < Cj

(P4) ci s dj implies di < dj

o

Lemma 3.1 Any agent A containing no constructs of the

form 3XB can be converted to normal form using equations

(U) - (L12),

Lemma 3.2 For ang agent A = AICICI + d; in normal

form, P(c.A)(ci) = d;.

We use this lemma when proving the following complete-

ness theorem:

Theorem 3.3 P(c.A) = P(c. B) ifl A and B have the same

normal form.

Thus the laws (Ll) . . . (L12) are both sound and com-

plete for finite agents built using tells, asks and parallel

composition.

In addition, we also have:

Theorem 3.4 Laws (Ll) – (L12) and (Ez1)-(Ex4) are sound

and complete for all finite agents.

Operational semantics. In order to extract an environment

from D.A h which to run A, we define:

?qe)p = p

7Z(p(X) :: A.D)p = 7L(D)LI~ * (3XdaX A A)]

A computation in this transition system is a sequence of

transitions in which the environment is constrained to pro-

duce nothing. Hence the final constraint of each transition

should match the initial constraint of the succeding tram

sition. The following definition formalizes the notion of a

computation starting from a finite constraint c:
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Definition 3.3 A c-transition sequence s for a program
D.A is a possibly infinite sequence (c~, Ai)i of pairs of agents

and stores such that co = c and A. = A and for all i,

7Z(D)po 1- Ai ‘c;~+’) Ai+l. Here p. is the partial map

from procedure names to (syntactic) agents whose domain

is empty. Such a transition sequence is said to be terminal

if it is finite, of length n ~ 1 and An_ I k stuck in c~–1

(that is, there is no constraint d and agent B such that

~(D)po * A.-I
(..=4

B). In such a case, c~–1 is also

called the final store. •1

One can prove a number of operational results in a fairly

straightforward way.

Lemma 3.5 (Operational monotonicity.) 1. Al ‘fi A2

as a possible transition and c < c’ then Al “’-’) AZ.

This is essentially an operational rnonotonicity property.

Definition 3.4 Suppose that an agent A in a store c has

two transitions enabled, i.e. it could do either one of A ‘u)

Al and A ‘n) A2. We say that these transitions commute

if Al “’~”’) As, and Az “’~uc’) Aa are both possible. ❑

The following lemma is almost immediate and character-

izes a key property of determinate agents.

Lemma 3.6 If an agent has more than one transition pos-

sible in a given store they will commute.

The following theorem can be proved by appealing to

commut ativit y.

Theorem 3.7 (Confluence) For any constraint c and de-

terminate program D.A, if D.A has a terminal c-transition

sequence with final store d, then D.A has no infinite c-

transition sequence. Further, all terminal c-transition se-

quences have the same final store.

This theorem allows us to define an observation function

on programs mapping IDIO to ID]O by: O(P)(C) = d if P

has a terminal c-transition sequence with final store d, and
O(P)(C) = false otherwise,

Theorem 3.8 The @nction O(P) is a closure operator.

The only nontrivial part of this proof is showing idem-

potence; it is done by induction on the length of reduction

sequences and use of Lemma 3.5.

We can now connect the operational semantics with the

denotational semantics.

Theorem 3,9 (Strong adequacy) O(P) = P(P)

Therefore, two programs P and Q are observationally

equal (O(P) = O(Q)) iff their denotations are equal (’P(P) =

P(Q)). Thus the denotations of programs contain enough

information to distinguish programs that are operationally

different. Proof sketch: One can show that a single re-

duction step preserves the denotational semantics. Then we

show that the sets of fixed points of the two closure opera-

tors are the same. In order to do this we use a structural

induction and a fixed-point induction for the recursive case.

The proofs are not trivial but they are not particularly novel

either. The full paper will contain a more thorough discus-

sion.

It remains to show that the denotations of two programs

are identified if, from the viewpoint of the operational se-

mantics, they behave identically in all contezts.

Definition 3.5 A context C[*] is a program D.AIo] whose

agent A contains a “placeholder” (denoted by c). We put a

program D’.A’ into this context by taking the union of the

definitions (renaming procedures where necessary to avoid

name clashes) and replacing the placeholder ● in A with A’,

yielding C[D’.A’] = D u D’.A[A’]. u

Theorem 3.10 (Full abstraction) P(P) = P(Q) if/ for
all contexts C[*], Obs(CIP]) = Obs(CIQ]).

The theorem is easy to prove given that we have strong

adequacy and a compositional definition of the denotational

semantics.

3.2 Alternate semantic treatments

The first semantics is based on the notion that it is appropri-

ate to confuse the process that takes some input c to false

and halts, with the process that diverges on input c. How-

ever, several other coherent alternative notions for handling

divergence can be modelled with minor variations on the

above theme. In this section we show briefly how to gen-

erate a model which distinguishes between false and div,

and also how to generate a model which associates with each

input the limit of fair execution sequences of the program

on that input. In each case we sketch the major idea and

leave a full development as an exercise for the reader.

Distinguishing div from false. Suppose for each input to

a process we observe whether or not the process diverges,
and if it does not, we observe the resultant store. Thus,
the denotation f of an agent A will be a partial function

from [D1O to ID IO. What sort of function? observe that if a
determinate cc process engages in an infinite execution se-

quence in c, then it must also engage in an infinite execution

sequence in a store d > c. Therefore the domain of f will

be downward-closed. However, as before, on this domain f

will be a closure operator. This motivates the definition:

Definition 3.6 A partial closure operator on a lattice E is

a closure operator on a downward-closed subset of E. ❑

As before, the range of a partial closure operator contains
enough information to recover the function. In particular,
the domain of the function is just the downward closure of

the range of the function. In fact, the set of fixed points of
a partial closure operator can be characterized quite simply
as follows: For any lattice E, a set S G E is the set of fixed

points of a partial closure operator on E iff S is closed under

glbs of arbitrary non-emptg subsets. Thus, the added gener-

ality arises merely from the fact that false is not required

to be a fixed point of a partial closure operator!

Note that the (range of the) partial closure operator cor-

responding to div, the program that diverges on every input,

is just 0, since the domain of the function is the empty set.

On the other hand, the (range of the) partial closure opera-

tor corresponding to false is {false}. Thus this semantics

distinguishes between these two programs.

As before, partial closure operators can be partially or-

dered by the divergence ordering:

f<guf~gcfudf

where d~, the set of inputs on which ~ is undefined is just,
the complement in IDIo of the domain of f (i.e., lDlo\ 1 f).
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Rather surprisingly, the definition of the combinators re-

mains unchanged, even though the ‘fmeaning” (operational

interpretation) of the denotation has changed:

c*={d G{ Dlold>c}

c+ A={d61Dlold>c+dc A}

A,AAz={dEIDIoldeA,Ad~Az}

3XA = {d, G IDIo I ~C ~ A.qxc = ~xd}

Each of these definitions yields a partial closure operator

when its process arguments are partial closure operators.

Each defines a function that is monotone and continuous in

its process arguments.

Connections with the operational semantics can be es-

tablished in a manner analogous to the connections estab-

lished above.

A semantics based on observing limits. The above seman-

tics treats a divergent computation as catastrophic—it is

treated as the computation that causes the store to become

inconsistent. As discussed earlier, it is possible to develop a

different semantics, one in which limits of fair execution se-

quences are observed. For example, such a semantics would

associate the cc/Kahn process:

ones(X) :: ~Y X = a(l.h, Y) A ones(Y).

with the closure operator that maps true to the (limit)

constraint that forces X to be the infinite seauence of 1s..
whereas the previous semantics would associate this pro-

gram with the partial closure operator that diverges in true.

First we need to define the notion of fair execution se-

quence. At any stage of the computation there may be sev-

eral enabled transitions, each of which reduces one of the

agent’s subagents. Note that if a subagent can be reduced

at a given stage of the computation, it can be reduced at

every successive stage of the computation until a transition

is taken that actually carries out the reduction. We say that
a c-transition sequence s is jair if it eventually reduces every

subagent that can be reduced at some stage of s. This is a
common notion that one needs in defining the operational

semantics of concurrent svstems.

In such a semantics, \he denotation of a process asso-

ciates with each input the limit of the sequence of store

on any fair execution sequence of the process. Hence, the

denotation is taken to be an operator over ID I (instead of

over IDIO). As above, the denotation must be a closure

oDerator—but in addition. it seems reasonable to demand

that no process can decide to produce some output after

it has examined an infinite amount of input. That is, we

demand that ~ be continuous: for every directed S Q D:

f(us) = Uf(s) (lo)

In terms of fixed points, it is not hard to see that if S
is the set of fixed points of a closure operator f, then ~ is

continuous iff S is closed under lubs of directed subsets.
The partial order on processes is now the extensional

one: ~ ~ g iff $ ~ g. The bottom element in the partial
order is Id (that is, ID[) (thus limits of chains are given by

intersection) and the top element is {false], the operator

which maps every element to false.

Even more surprisingly, the definition of combinators re-

mains unchanged from the previous section, modulo the fact

that fixed points must now be taken from IDI instead of just

lDlo:

c+={dcIDlldzc}

c-+A={dcIDlld~c+dcA}

AIAAz={delDlldeAIAdeAz}

3XA = {d c IDI I ~C c A.3xc = ~xd}

Each of these combinators is seen to be we~-defined (they

yield continuous closure operators when their process argu-

ments are continuous closure operators), and monotone and

continuous in their process arguments.

The following result follows from the commutativity prop-

erties of transitions.

Theorem 3.11 If S1 and sz are both fair c-transition se-

quences for A, then uCons(sI) = UCons(sz), where Cons(s)

yields the set of constraints from s.

This theorem allows us to define an observation function

on programs mapping IDIo to IDI by:

(MS(P)(C) = I-Icons(s)

for s any fair c-transition sequence for P.

Relationship with the denotational semantics. This dis-

cussion is quite brief as it is quite similar to the previous

discussion. The new issues one must to deal with are that

transition sequences have to be fair and the semantic do-

main has an entirely different order. Also, the operational

semantic function is defined on the entire domain generated

by the constraint system rather than just the finite elements.

The relevant theorems are as follows.

Theorem 3.12 O(P), the continuous extension of Ohs(P)

is a closwe operator on IDI.

Theorem 3.13 O(P) = P(P).

Theorem 3.14 (Full abstraction) P(P) = ‘P(Q) ifl for

all contezts C[e], Obs(CIP]) = Obs(CIQ]).

4 The nondeterminate language

Let us now consider the determinate cc language in the

previous section, together with (bounded) nondeterminate

choice. Syntactically, admit as an agent expressions of the

form

CI~AICIC2~A211. ..O cn+A.

for finite constraints c~ and agents Ai, n z 1. Intuitively,

in any store d, such an agent can in one uninterruptible

step reduce to A, without affecting the store provided that

the ith branch is “open”, that is, d z ci. If no branch is

open, the agent remains stuck, and if more than one branch

is open, then any one can be chosen. Thus the axiom for

dependent choice satisfied by the - relation is:

With this construct admitted into the language, the de-

notation of an agent can no longer be a function from ]DIo

to IDIo. Neither can it be just a relation in IDIo x ]Dlo,

since parallel composition will not be definable. Instead we

model a process as a set of ~aihmes, which record the in-

teractions that a process engages in with the environment
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before reaching a state (“resting point”) in which it cannot

progress without intervention by the environment. This sim-

ple idea turns out to be adequate to give us a denotational

semantics which is fully abstract with respect to a notion of

observation that includes observation of divergence and the

final (quiescent ) stores of an execution sequence.

The rest of this section is devoted to giving an expo-

sition of this model. Because of the nature of constraint-

based communication, it turns out to be very convenient to
model failures as certain kinds of closure operators, namely,

bounded trace operators. In the next subsection we treat
some of the basic ideas underlying bounded trace operators,

before turning to a presentation of the model.

4.1 The basic model

Trace operators. In general (provided that that the un-

derlying constraint system is expressive enough, see Sec-

tion .3), a finite closure operator can be represented as the

parallel composition of a finite set of finite sequences of

asks and tells, where a sequence al !bl * . . . an !b~ * (called

a trace) is thought of as representing the closure op”erator
a,~(b, A(az+b,... (am+ b~)...).]5

A trace operator over a finitary lattice E is, intuitively, a

closure operator that can be represented by a single (possi-

bly infinite) ask/tell sequence. The characterizing property

of a trace operator ~ is that if S ~ E is a set of elements none

of which are fixed points of ~, then neither is nS (provided
that it exists):

Definition 4.1 A trace operator over a finitary lattice E is

a closure operator f over E such that for any S ~ E, if S is

disjoint from ~, then ilS @ ~ (whenever flS is defined). Let
T(E) be the set of all trace operators over E. D

Intuitively this definition can be justified as follows. Let

d be an arbitrary element in S, and suppose that t is a trace.
Then, if d is not a fixed point oft, itshould be possible for

t to execute some prefix of its actions, including at least

one tell action involving a constraint stronger than d, before

quiescing. Similarly for any other e c S. Let s be the

smallest prefix executed by t in e or d. d m e will be > all

the asks in s, so t will be able to execute all of s, inclu~ing

a tell involvirw a constraint strorwer than d n e.

The chara~teristic condition o; a trace operator can be

stated much more elegantly as follows. For j a closure op-

erator over a lattice E, define ~-], the inverse of f to be
the set of elements (E\ ~) u { TE}.

Lemma 4.1 A closure operator f : E + E is a trace oper-

ator iff f-l is a closure operator. If f is a trace operator,

then so is f‘1.

f-l is. s~~ to be the inverse of f because it is the weak-
est g satmfymg f A g = f n g = {T E}. Intuitively, ~-1

is exactly the sequence of asks and tells that “unzips” .f:

it asks exactly what f tells and tells exactly what ~ asks.

Consequently, on any input to j A f‘1, both the sequences

can be traversed completely, yielding the final answer T E.

Thus trace operators can be thought of as invertible closure
operators.

Conversely, it is possible to show that each trace opera-

tor can be represented canonically as a sequence of ask/tell

actions:

15RecaII that for c c E and / a closure operator on e, c + f is the
closure operator on E with fixed points {d G E I d ~ c * d C -f}.

Lemma 4.2 Every trace operator f : E --+ E can be rep-
resented by an alternating, strictly increasing sequence of

ask/tell actions.

The basic idea behind the construction of the canonical

sequence is quite simple. Let ~ be a trace operator and

g = f-l. Then the canonical trace corresponding to ~ is

just:

f(tr-ue) * g(f(tr-ue))!f(g( f(true))) * . .

The following lemma is not difficult to show:

Lemma 4.3 Let D = (D, k, Var, {3x1X ~ Var}) be a cylin-

dric constraint system. For every c c ]Dlo, Y 6 ‘Jar and

f c T(IDIo), C, c -+ ~,c A j, 3~f ~ ?_(/DIo), where c is the
closure operator {d E IDIo I d ~ c}.

Thus trace operators are closed under almost all the op-

erations of interest to us—except, naturally enough, arbi-

trary parallel composition.

Bounded trace operators. The failures of a process record

a “resting point” of the process, together with information

about how to get there. So it would seem as if a failure

should be represented as a pair (f, c) where c E ~ is the
resting point, and f is a trace operator describing the set of

ask/tell interactions needed to reach c. Note however, that

the only information of interest in f is its behavior on j c.

But if c E f, then fn J c is also a trace operator—but on

the sub-lattice 1 c.

Therefore, a bounded trace operator (or bto, for short)

on a finitary lattice E is defined to be a trace operator on

J c, for some c ~ E, This makes bounded trace operators

a special kind of partial trace operators—specifically, those

whose range contains a maximal element. (Partial trace

operators are just the partial closure operators of Section 3

that are in addition traces.) Let bT(E) = uceET(l C) denote

the set of all such operators.

Just like any other (partial) trace operator, a bto .f is

also representable by its range, and its domain of definition

is just J ~, where j (read “max P) is the greatest fixed

point of ~. Various operations defined on closure operators

are applicable to btos, with obvious adjustments. Thus, for

any constraint c, we shall take the bto corresponding to the

imposition of c to be just the bto (whose set of fixed points

are) {c}. Similarly, for a constraint c and trace operator f,

withj~c, the btoc+f is just the bto{d<~[d~c+

d ~ f}.
However, some additional operations are also of interest

over btos. We next discuss operations that reflect the opera-
tional notion of extending a sequence of aak/tell interactions
with more ask/tell actions.

Let f be a (finite) bto, with canonical sequence of ask/tell

actions s, and let c ~ ~ be any constraint. Define f.ck (read:

“f output extended by c“ ) to be the bto corresponding to

the sequence of actions s.c*. It is not hard to find a dkect
represent ation of f. C* in terms of f and c: 16

f.c*={d <cldfli E.f, dZj}U{c}

In the following, we shall assume that the expression f .c* is

well-defined even if c ~ j, and take it to stand for f in such

cases. Note that f.c + .d* = f.d+, if c s d.

16The eXPre~8ion d n j ~ f should be taken to stand for “d n ~ is

contained in ~, provided that it exists”.
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Similarly, we can define the notion of input extending a

bto ~ with a constraint c by:

As above, note that ~.c!. d! = ~.d!, if c < d.

Given the definitions of input- and output-extensions, it

is not hard to see that for any sequence of ask/tell actions

s=e~e~. . . en, the corresponding closure operator is just

(.. . (({true} .e~).ez) . . .).e~ (where we have abused notation
by writing $.e for the expression ~.c! in case e ~ c! and for

the expression ~.c* in case e = c*).

Let us write ~ L g for the case in which ~ can be thought

of as a “prefix” of g, that is, g can be thought of as extending

the sequence of interactions with the environment engaged

in by ~. How can this partial order be expressed directly in

terms of (the set of fixed-points of) ~ and g? Clearly, none

of the additional interactions in g can cause g to take on

a different value from ~ at all points in f’s domain (J ~),

except possibly at ~.17 Therefore, we can define:

As can be verified from the definition, ~ is a partial

order.

Finally, one more partial order will be of interest in what

follows. We say that ~ asks more than g (and write f ~ g)

if the resting point of both ~ and g are identical, but f

records more contributions from the environment than g.

This happens just in cas~ ij = ~ and Vz c1 ij.~(z) s g(z),

that is, just in case j = j and ~ z g.

4.2 The model

Let the set of all observations, OtM(l DIO), be the set of finite,

bounded trace operators on ID 10. A process will be a subset

of Obs satisfying certain conditions which we now motivate,

following [Jos90] closely.

At any stage of the computation, a process will have

engaged in some ask/tell interactions with the store. Subse-

quently, it may produce some output and then quiesce (per-

haps to be activated on more input at a subsequent stage)

or it may engage in an infinite sequence of actions, with-

out requiring any input from the environment to progress

(perhaps producing more and more output as it progresses).

We will model a process as divergent if it can quiesce in

infinitely many ways (or output forever) or if it causes the
18 (Thus we are reqUiring thatstore to become inconsistent.

processes be finitely nondetermininate.) If F is the set of

failures of such a process, its divergences can then be defined

as:

dF = {-f I {c I f.c* G J?} is infinite}
u{f \ f. false* E F}

Each of these situations is considered undesirable, and we

are not concerned about detailed modelling of the process

17For an example of = closure operator g which extends f but takes

on a different value at f- than j, consider the closure operators ob.

tained from the sequences a!&k and a!b * c*, for a < b < c,
18& di~cus~~d in the introduction, it is quite reasonable in this

set-up to regard the process that produces the inconsistent store as

divergent. It is possible to give a minor variation of the current treat-

ment which distinguishes the process that diverges from the process
that tells false, but this is outside the scope of this paper.

once it has become divergent. Thus such a process is treated
as “chaotic”, aa being able to exhibit any behavior whatso-
ever. Further, we require that the set of possible behaviors
of a process cent sin aii its possible behaviors, especially its
diverging ones. Thus the first condition we impose on a

process F is:

where for any S ~ Ohs, eS is the set {s ~ t I t E S} of

extensions of S.

Note that ~.c* E dF implies ~ c dF. Thus the last

action in a sequence of ask/tell interactions constituting a

minimal divergence must be an ask action. In other words, a

divergence characterizes those inputs from the environment

that are undesirable, that can cause the process to break.

From the definition, it should be clear that a! distributes

through finite unions and arbitrary intersections of arbitrary

sets of observations. Also, the divergences of a process can

be characterized rather nicely:

Lemma 4.4

fEdFuvg2f.g~F-f.false* EF

The next few conditions are best motivated by consid-

ering the traces of a process. A trace of a process is just

a sequence of aak/tell interactions that the process many

engage in (without necessarily reaching a quiescent state),

But the traces of a process can be recovered in a simple way

from its failures: they are just the observations which can

be ontput-extended to obtain a failure:

Clearly, F G tF and t distributes through arbitrary unions

of sets of observations.

We require that if a process exhibits a trace, then it

should be possible for it to exhilit a prefix of the trace as

well-this is inherent in the very idea of a trace:

We also require that every process should have some be-

haviors, hence a non-empty set of failures. Given Condi-

tion 13, this is equivalent to stating that the “empty” bto

true! = true* = {true} be a trace of every process:

{true} E F (14)

Since cc processes are asynchronous, the environment

can never be prevented from adding constraints to the store.

Therefore, it should be possible to extend every sequence of

interactions that a process may have with its environment

with an input action: (the receptiveness condition):

fGtF*f.c!~tF (15)

It is not hard to show that for any chain of processes F1 s

Fz. . . . t n,>l F~ = ni21tF,.

We req~lre one final condition on processes. If a process

can engage in a sequence of actions recorded by a bto f

before quiescing, then it can engage in the same sequence of

actions even if at some or all stages the environment were

to supply more input than the minimum required by the

process to engage in ~. Thus we require that the failures of

a process be closed under the “ask more” relationship:

gSfeF+g~F (16)
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In essence, this condition represents the monotonic na-
ture of the basic ask and tell actions.

Now we are ready to define:

Definition 4.2 A (nondeterminate) process is a subset of
OZW(IDIO) satisfying Conditions 12–16. Let NProc be the set
of all such subsets. ❑

The following lemma establishes that the convergence
of a process already contain enough information to generate
its divergences. (The converse is not true. ) For F a process,
define iF, the input extensions of F to be the set {~.c! I f ~

F}, and cF, the convergence of F to be the set F \ dF.

Lemma 4,5 dF = e((icF U {{true}}) \ tcF)

Essentially, any input extension of a convergent trace of

a process must have an output extension that is a failure
of the process (Condition 15); if this output extension is
not a convergence, it must be a divergence and so must its
extensions. Conversely, a divergence of a process must have

a prefix which input-extends a convergence and is not itself a
convergent trace; otherwise the process is chaotic, and every

bto is a divergence.

Partial order on processes. Usually, processes in specification-
orient ed semantics are ordered by the so-called no ndeterm in-

isrn ordering:

FLG~FzG

which corresponds to the intuition that a process is “better”
than another if it is more deterministic. The completely

undefined process is the chaotic process, which can exhibit
all possible behaviors: as more and more information about

a process is generated, more and more behaviors get ruled
out .

However, in many senses, this ordering is more liberal
than desired, as discussed by Roscoe in [Ros88]. For exam-

ple, one way in which a process G can improve a process
F is by dropping some convergent behavior of F, This sort

of capability is not manifested by any cc combinator (or,

indeed, any CSP combinator), and we find it more conve-

nient to adopt instead the divergence ordering proposed by

Roscoe. In this ordering G is “better” than F iff it diverges
at fewer places than F, and the convergent behaviors of F

are preserved in G. More precisely, the partial order is:

F<GwcF~cG~F

It is easy to see from the definition that F < G implies F E

G. Furthermore, the least element in the partial order ~
OIM, and limits of increasing chains are given by intersection.

In fact, ifFl <F2 <,,. is an increasing chain with lub
F = ni21Fi, we have CF = Ui21cFi and dF = na21dFj.

Theorem 4.6 (NProc, <) is a complete partial order.

Syntax.

P::=D.A

D::=, I P(X) :: A I D.D

A::=c IA AA13XAIP(X)IC1+A1 CI... lJCj+Aj

Auxiliary Definitions.

dF = {f I {c I j.ti ~ F} is infinite}

U{~ I ~.fals% ~ F}

tF = {f I ~C.j.ti c F}

FllG={fng cOh. li=ti, jEF, g6G}

X-F=

{g G Obs I g <Jdn @X( f.false!)),3xd = 3xi,f c F}

3x(dxYUF) = {{ax(dxyuc) I c~ f} I f ~ F}

Semantic Equations.

.4(c)e= {jlfn~c~j,c<j}

u{g~flfn tc~f, cuj= false}

A(DJcJ(cJ + Aj))e=

{f6A(Aj)elf=cj+f,f?cj,~e~}

u{jdlvjc.l. d~cj}

A(A A l?). = A(A)e11A(J3)e U ed(L4(A)e[ltA(B)e)

A(3XA)e = (X’d(A)e) u {g < f I f c 4x’ A(A)e)}

A(p(X))e = 3~(dex U e(~))

S(e)e = e

fi(p(X) :: A.D) = C(D)e[p w ~x(dax uA(A)e)]

P(D.A) = .4(A)( & S(D))

Above, c ranges over basic constraints, that is, finite sets of to-

kens. P is the syntactic class of programs, D is the syntactic

class of sequences of procedure de&rations, and A is the syn-

tactic class of agents. a is some variable in the underlying con-

straint system which is not allowed to occur in user programs. (It

is used as a dummy variable during parameter passing. ) e maps

procedure names to processes, providing an environment for in-

terpreting procedure calls. We use the notation c U j to stand for

{cudld~j}.

Table 2: Denotational semantics for the Ask-and-Tell non-
determinate cc languages
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4.3 Process algebra

In this section, we define various processes in and combina-
tors on NProc, including div, the process that immediately
diverges, the tell (of finite constraints), parallel composi-

tion, nondeterminate choice and hiding combinators. The
syntax of the programming language is given in Table 2,

where the semantic definitions, to be discussed below, are

also summarized. As before, we also simultaneously define

the operational semantics of the language and assume that

procedures take exactly one variable as a parameter and that

no program calls an undefined procedure.

Chaos. The chaotic process can do anything whatsoever.

div= Obs

Clearly, d(div) = t(div) = Ohs. Operationally, such an

agent is always willing to progress in any store. This progress

affects neither thestore nor the agent’s subsequent behavior:

div (~) div
(17)

e

Tells. Consider a process which immediately terminates,

after augmenting the store with some constraint c E E. Let

us call such a process c. The resting points of such a process

are clearly all stores e z c. To reach this resting point, the

process can at most add cto the store. It is not hard to see

that a bto ~ satisfies the condition that for all inputs z in

its domain, ~(x) s x u c iff ~m T c G ~. When does such a

process diverge? It must diverge iff it can engage in some

sequence of interactions with the store (in which its output

is bounded by c), after which it reaches a state in which if

it were to output c, it would reach false:

It is easy

C= {flfn~c~f,f>c}

Ue{~[~llTc~$,~Uc=false}

to work through the definitions and establish that

ri(c)=e{~l ~ntc~~, ~l-lc=false}

t(c)={~l~ntc~$}ud(c)

and that c (as defined above) is a process.

The relevant axiom for the transition relation for these

agents is the same as in the determinate case (Axiom 4).

Dependent choice. Consider the process F = o ~c~(cj +

I’j). It has two kinds of resting points: first, the resting

points d that arise because for no j s J is d > Cj, and

secondly, the resting points of each F3 which are stronger

than the corresponding C3. Furthermore, the btos generating

the first kind of resting point are simple: they are of the form

d! =J. d, since no output is produced by the process before it
quiesces in d. On the other hand, the path followed by F in

reaching a resting point of Fj stronger than Cj is the path

that F3 would have followed given that the environment is

willing to supply at least C3, that is paths f E Fj such that

~ = Cj + ~. This leads us to the definition:

CljeJ(cj~Fj)= {f~Fjlf =c, +f, c,< f,j~J}
u{~d lVj 6 l.d~cj}

As can be calculated, the divergences and traces of F are:

d(uje~(cj + F,)) =

{~cdFjli=c]+f,cj<;,~cJ}
t( H je.r(cj + Fj)) =

{fctFil f=cj+f, cjS$, jEJ}
u{Jd Ivj G ‘7.dz Cj}

The combinator is monotone and continuous in each of its

process arguments.
Two special cases of this operator are worth singling out.

In case the index-set is singleton, dependent choice is not a
form of choice at all and reduces to just the ask-combinator.

That is, c --+ A is just dependent choice in which only one
conditional is given. In terms of denotations, we get:

c-+ F={ f~Flf=c+f, c<f} u{ldld~c}

Note that for such agents, the transition Axiom II reduces

to just Axiom 5 (Section 3).

Similarly, blind unconditional choice can also be expressed.

Consider the binary combinator n defined such that F n G

can behave either like F or like G. The decision can be made

arbitrarily, even at compile-time. Thus the failures of F n G

should be precisely the failures of F or the faihres of G. As

can easily be checked, F u G = true -+ F o true ~ G as

well. Therefore, FnG can be defined as true * F u true -

G. Clearlv. blind choice is idempotent, associative and com-. .
mutative and has div
agent built from blind

Parallel composition.

as a zero element. Operationally, an

choice satisfies the axioms:

(18)

What are the resting points of FAG’?

Clearly, if c ‘is a resting point of F and o~ “G, then it is a

resting point of F A G. The path followed to this resting

point by F A G can be any parallel composition of the paths

followed by F and by G. Therefore, each failure in the set

F’IIG is going to be a failure of F A G, where

FllG={fng cObslf=ij, fcF, geG}

But what are the divergences of F A G? The divergences

of F A G arise not only from the divergences of F and of

G, but also from the possibility that the two agents may

engage in an infinite sequence of interactions with each an-

swering the others asks, without demanding input from the

environment at any stage. There will be no bto in Fll G cor-

responding to such “mutual feed-back” because there is no

common resting-point on this execution branch.

Capturing these possibilities for a cc language built over

an arbitrary constraint system seems rather subtle. A sim-

ple formulation is possible, however, for finitary constraint

systems, that is, constraint systems in which a finite element

dominates only finitely many finite elements. In this case we

can show:

Lemma 4.7 If D is a jinitary constraint system, then for

every F E NProc(D), dF = dtF.

This suggests that to determine the divergences of F A G,

it is sufficient to determine the divergences of the traces of

F A G. But this is easy: a trace of F A G is just a trace
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of F running in parallel with a trace of G, and hence the
divergent traces are just ed(tFl[tG). We thus get:

F A G = FIIG U ed(t(F)l[t(G))

From these we can caculate:

d(F A G) = ed(tFlltG)

t(F A G) = (tFlltG) U ed(tFlltG)

Proving continuity of this operator requires some care.

The basic issue is to show that ed(tFlltG) is continuous in
its arguments.

The operational transition rule for agents built with A is
the same aa in the deterministic case (Axiom 6).

Projection. d is a resting point of %YF iff when F is ini-

tiated in (=xd), itreaches a resting point e such that the
only new information in e (over d) is on X; that is, such that

(3xe) = (Sxd). Therefore d is a resting point of 3XF iff

there is an j ~ F such that 3x~ = 3Xd. The route taken by

(3XF) to reach d from true must be the route prescribed
by 3Xg, where g is obtained from ~ by extending it to be a
closure operator over ID IO, restricted to J.d. Thus define:

X-F=

{g c Obs I g Sldn (3X(~.false!)),3xd = 3x~,~ c F}

Now the failures of 3XF are:

3XF=X”FU {g< flfeed(X-F)}

The divergences and traces for this process can be shown
to be:

d(3XF) = {g < f I f~ed(X-F))

t@XF)=X”tFu{g ~~1~< d(X’F))

This operator is monotone and continuous in its argument.

The transition relation for 3XA is the same as in the de-

terminate case; the transition relation must therefore be ex-

tended to agents with an internal store.

Recursion. Recursion is handled in the usual way, by tak-

ing limits of the denotations of all syntactic approximants,

since the underlying domain of processes is a cpo and all

the combinators are continuous in their process arguments.
The diagonal elements are used to effect parameter passing

(see Table 2). Operationally, procedure calls are handled as
in the determinate case.

4.4 Operational Semantics

The operational semantics associates with every program

and every initial store the set of all possible outputs ob-

tainable from the store, with the caveat that if the process

diverges or produces false, then every output is deemed ob-

servable. Here we use the notation P has a (c, d)-sequence

to mean P has a terminal c-transition sequence with final
store d.

Definition 4.3 For any program P define

O(P) =

{

Obs if P has an infinite true-sequence

Obs if P has a (true, ~atse)-sequence

{d I P has a (true, d)-sequence }otherwise

D

Relationship with the denotational semantics. We make
the connection between the operational semantics and the

denotational semantics via the following theorems. The
proofs are omitted in this version.

Theorem 4.8 (Adequacy) O(P) = {d I {d} ● P(P)}

That is, the results obtained by executing a program

are identical to the resting points of the program obtained
from the store true. Note that thk is a weaker correspon-

dence than in the determinate caae, when the operational
semantics was identical to the denotational semantics. The

following fulI abstraction proof uses the notion of context

previously defined for determinate programs.

Theorem 4.9 (Full abstraction) P(P) = P(Q) @ for
a/J contexts C[e], O(CIP]) = O(CIQ]).

If the denotations of two programs P and Q are differ-

ent, then there will be a <-maximal bto ~ in one and not,
in the other. It can be shown that the sequence s corre-

sponding to such an ~ can be expressed in the language,
which implies that the sequence s-l corresponding to $-1

can also be expressed in the language. But then the finite
bto s–l A ● is a context which distinguishes the two pro-

grams. Let F = ‘P(P), G = P(Q). Assume without loss
of generality that ,f c F and ~ # G. There are two cases:

f E dF and f E cF. If f E dF then s-l A F will diverge,
and O(s–l A F) = IDIO. f @ G implies S-l A G will not

diverge, and therefore false @ O(s-l A G). If ~ = cF, then

~ < O(s-l A F). If ~ 6 O(s-’ A G) then ~ must be a

convergence of G, which violates the assumption.

4.5 Relationship between the nondeterminate and deter-
minate semantics

We have only one set of transition rules for the determinate

combinators, and the same notion of observation for the

determinate and nondeterminate semantics. Therefore, the

operational semantics for the determinate language and the

determinate subset of the nondeterminate language are the

same. Because both the determinate (AD ) and nondeter-

minate (A.N) denot ational semantics are fully abstract with

respect to the corresponding operational semantics, there

should be some relationship between Ajv (P) and AD (P).

Consider the two determinate agent-equivalence classes CD

and CN induced by AD and AN, respectively. Because the

nondeterminate language has more contexts with which to

tell apart agents than the determinate language, CD should

be a coarsening of CN, and we should therefore be able to re-

cover a determinate program’s determinate denotation from

its nondeterminate denotation.

Definition 4.4 An element F E NProc is determinate if

1. f E CF1 F c NProc and c > ~ implies f.ck @ tF

2. f 6 cF, g E tF and j = ~ implies g c cF.

Let DNProc be the subset of determinate processes of

NProc. n

Henceforth when we say determinate, we mean that we
have an agent in NProc that satisfies the determina.y condi-

tion and not an element of the syntactic class of determinate

processes. We, of course, would like the denotation of agents

built from the determinate combinators to be determinate:
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Theorem 4.10 AN(A) is determinate if A is constructed
using the determinate combinators.

We are now ready to define DN, which associates with

F c DNProc a corresponding element in DProc, the domain

used for the denotational semantics of determinate agents

in Section 3.

Definition 4.5 DN(F) = {~ I f c cF} U {false}, for F S

DNProc. •1

Theorem 4.11 DN(AN(A)) = AD(A) for all agents A

constructed from the determinate operators.

We prove this theorem by first showing that DN(AN(A))
is a closure operator. We then show by structural induction

that the theorem holds for finite agents built using the deter-

minate combinators. We prove the theorem for recursively

defined agents by showing that DN is monotone and con-

tinuous.

5 Conclusion and Future work

This paper presents a comprehensive treatment of the specifi-

cation-oriented approach to the semantics of programs writ-

ten in concurrent constraint programming languages. This

treatment includes programs built using recursion. By for-

malizing a general notion of constraint system, we cleanly

separate the semantics of the programming language com-

binators from the semantics of the underlying data domain.

This separation allows us to uniformly address the semantics

of a wide variety of concurrent constraint programming lan-

guages with a single generaJ framework. These languages

include, among others, the concurrent logic programming

languages and Kahn data-flow net works.

Our work brings into sharp focus the seamntic complex-

ity caused by having nondeterminacy in the cc languages.

The determinate semantics need only record the stores at

which a process quiesces – there is no need to maintain any

intermediate e process state information. The nondetermi-

nate semantics, on the other hand, must record both the

stores in which a process may quiesce, and, for each such

store, the possibIe computation paths to that store. It is in-

teresting that finitariness plays a key role in the determinate

semantics but not in the nondet erminat e semantics.

We make the connection between the determinate se-

mantics and the nondeterminate semantics by defining an

operator that extracts the determinate denotation of a pro-

gram built with the determinate combinat,ors from its non-

determinate denotation. We also present an equational ax-

iomatization that is complete for finite programs built with

the determinate combinators.

This paper also presents a single transition system for

both the determinate and nondeterminate languages. This

transition system uses diagonal elements and local stores to

eliminate messy variable renaming operations.

There are many directions for future research. These

include foundational concerns, such as are addressed here,

implementation issues and applications. We intend to pur-

sue all these issues in the coming months. In this section we

only mention the semantic issues.

We have by no means exhausted the range of interesting

combinators that are available in the determinate cc lan-

guages. For example, the glb operator on agents is also

available, and provides a sort of determinant e “disjunction”.

Some of these operators will be treated in the complete ver-

sion of this paper. A useful line of investigation is to try

to characterize “all sensible combinators” that one may use.

Here general results from category theory may help.

There are a variety of different semantics correspond-

ing to different notions of observations. We would like to

develop a semantics for the indeterminate case that is not

based on viewing divergence as chaos. This would be like

Plotkin’s powerdomain treatment of indeterminate impera-

tive languages [P1076]. In subsequent work we plan to de-

velop proof systems for safety and liveness properties of cc

programs based on these models. In a related paper we are

developing the closely related safety model and an axioma-

tization of equaJit y for it.

We also believe that it is possible to develop a theory of

higher-order determinate cc programming languages. There

are interesting connections to be made with other theories

of higher-order concurrent processes [BB90, JP90, Mi190] and

alSO with classical linear logic. It appears that concurrent

constraint languages may be related to the proof nets in-

troduced by Girard in his discussion of the proof theory of

linear logic. If this connection were successful it would ex-

hibit concurrent constraint programs as arising from linear

logic via a Curry-Howard isomorphism.
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